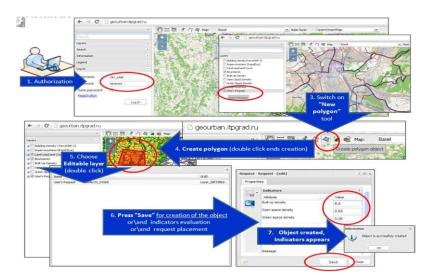


WP5: Progress and Planning

GRADI Ltd. December 13, 2017 Athens, Greece





WP5 - SEN4RUS WIS development

- The WIS will be developed by optimizing and expanding the functionality and performance of the prototype developed in GEOURBAN
- The WIS will be web-based, easily transferable to any city, analytical and visualization components are included
- New cloud computing capabilities will be implemented
- The WIS mobile application will be developed

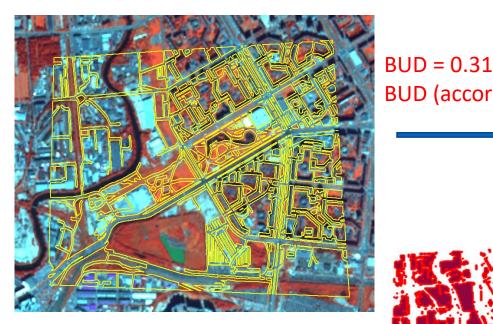
According to the national contract :

- Methodology for acquiring, processing and visualization satellite data, indicators evaluation, use cases and guides
- > EO-based Indicators set
- Software for satellite data
 processing, visualisation and
 evaluation of the indicators

Methodology & Indicators:

Inputs specifications:

- **1.** Free of charge satellite data Sentinel-1, 2, Landsat-8 and QuickBird.
- The spatial resolution of Sentinel 1 images 10 meters, Sentinel 2 20 meters, Landsat-8 30 meters and QuickBird 0,5 meters
- **3.** Optical images visible spectrum (RGB), infrared channel (IR) is required to derived vegetation and buildings, radar (two-dimensional) images is needed to produce DTM/DEM.


EO-based Indicators set:

A set of Indicators is selected by GRADI's specialists ("CoP") according to their usefulness and six Indicators are derived:

N⁰	Indicator	Users	Objectives
1	Built-up Density	Citizen activists	Monitoring of the urban environment quality and comparing with the standards
2	Green Space Density	Citizen activists, municipalities, urban planners	Monitoring and planning of territory improvement. Calculate the necessary percentage of landscaping
3	Flood	Citizen activists, municipalities, farmers	Detection and estimation of flooding areas. Cartographic material preparation for reporting
4	Road Network Density	Citizen activists, municipalities, ecologists	Monitoring of the urban environment quality and comparing with the standards
5	DEM/DTM dislocation of the land cover	Cartographers, municipalities, urban planners, ecologists, geodesists	Monitoring of the land cover and it's trans/ dislocation. Preventing landslides, detection of the emergences over the subway, mines/coalpits
6	Building Dynamics	Citizen activists, municipalities, urban planners	Monitoring of the building process in accordance with the standards or master plans and planning of the development perspectives

Built-up Density = $\frac{\text{built-up areas (buildings borders)}}{\text{polygon area (user's/city/community borders)}}$

The result of classification is selected building (residential)

For residential zones

BUD (according to the national standards) 0.2 – 0.6

Vector data processing and evaluation of the Built-up Density

Built-up Density

Input Requirements:

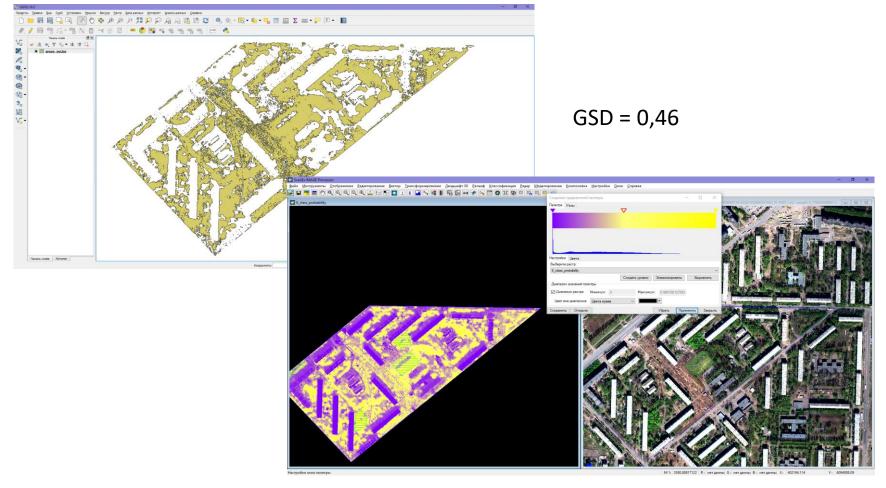
- Optical HR image (10 m, Sentinel-2)
- Cloudiness no more than 10%
- The current roads vector to the selected territory

Methodology:

- 1. Create a polygon area (if needed)
- 2. Exclude the vector of the road network (recommended)
- 3. Choose a set of building examples/etalons
- 4. Binary classification (within the polygon area)
- 5. Vectorize the result
- 6. Calculate by formula

Built-up Density = $\frac{\text{built-up areas (buildings borders)}}{\text{polygon area (user's/city/community borders)}}$

Built-up Density


Problems in evaluation:

- **1.** Alternative EO-data and different methods are needed for result verification
- 2. Built-up Density is not as useful as Built-up Density Ratio which is calculated as the ratio between the sum of all building floors area and built-up area, because it is impossible to atomize the calculation of the amount of all floors from a satellite image
- **3.** The result of binary classification strongly depends on the quality of the satellite image. The result should be controlled by the operator
- 4. Roads networks and railways are determined as the same spectral class in the classification from the Sentinel-2 satellite optical images. It is necessary to use a vector layer with roads and railways in order to exclude them from calculations.

Green Space Density = $\frac{\text{green space}}{\text{polygon area (user's/city/community borders)}}$

The grass, bushes, hedges, football or other playing fields etc.

Green Space Density

Input requirements:

- Optical HR image (10 m, Sentinel-2)
- Cloudiness less than 10%

Methodology:

- **1.** Create a polygon area (if needed)
- 2. Exclude the vector of the road network (recommended)
- 3. Choose a set of greens examples/etalons
- 4. Binary classification (within the polygon area)
- 5. Vectorize the result
- 6. Calculate by formula

Green Space Density = $\frac{\text{green space}}{\text{polygon area}(user's/city/community borders)}}$

Green Space Density

Problems in evaluation:

- 1. Alternative EO-data and different methods are needed for result verification
- 2. There are no national standards to compare with results that is why the indicator is not useful and "just for information"
- **3.** It is impossible to get a different types of green spaces/vegetation from the Sentinel-2 images

Flood is the difference between two vector layers of water objects, acquired in different time

The result of binary classification and vectorization

Flooding zones

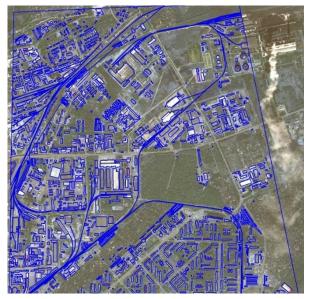
Flood

Input requirements:

Two optical images, e.g. Landsat-8 (^{1st} image – any time, 2nd – during flooding period).

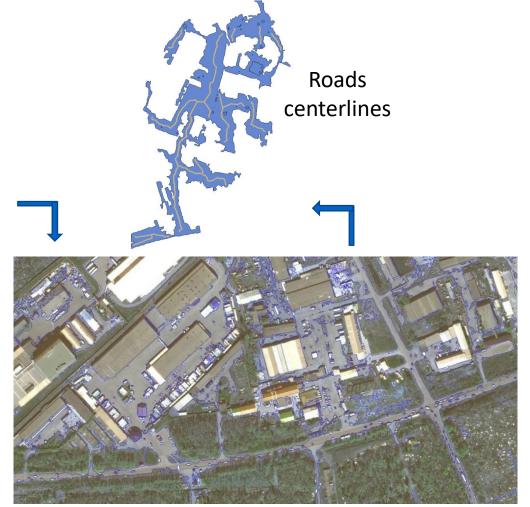
Methodology:

- **1**. Create a polygon area (if needed)
- 2. Choose a set of water examples/etalons on 1st image
- **3.** Binary classification (within the polygon area) on 1st image
- 4. Vectorize the result on 1st image
- 5. Repeat steps for the 2nd image
- 6. Calculate the difference between two vector layers


Flood

Problems in evaluation:

1. In order the indicator will be used by municipalities It should be legalized and officially confirmed by authorities that is why the indicator is not useful and "just for information"



Road Network Density = $\frac{\text{total length of roads}}{\text{polygon area (user's/city/community borders)}}$

Overlaying the vectors of railways and buildings (Omsk)

RND = 1,9 km/km2 RND (according to the national standards) 1.5 – 4.5 km/km2

The result of roads vectorization after the classification and filtration

Road Network Density

Requirement for source data:

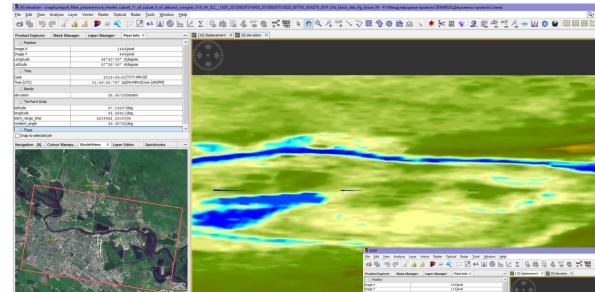
- Optical image with HR (5 meters, QuickBird)
- Vector of the roads and railways

Methodology:

- 1. Create a polygon area (if needed)
- 2. Exclude the vector of the buildings and railway (recommended)
- 3. Choose a set of road examples/etalons
- 4. Binary classification (within the polygon area)
- 5. Filter the image (Gaussian smoothing filter)
- 6. Vectorize the result
- 7. Determine the roads centerlines
- 8. Calculate the total length of the roads centerlines
- 9. Calculate by formula

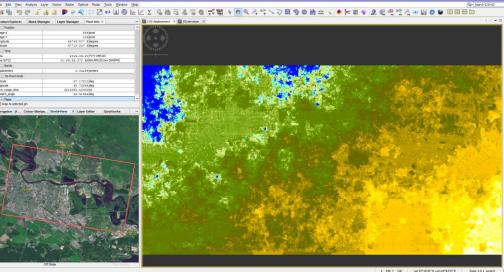
total length of roads

Road Network Density = $\frac{1}{\text{polygon area}(user's/city/community borders)}}$

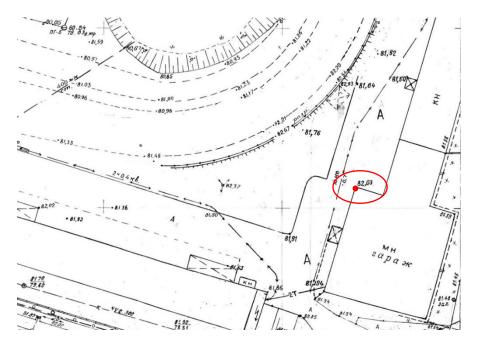

Road Network Density

Problems in evaluation:

- 1. The calculated Road Network Density is approximate but in accordance to the standards of urban planning
- 2. The input data is a classified raster has a complex shape, because of it the process calculation and filtering takes a long time



Digital Elevation Model (DEM)


Translocation/ dislocation of the land cover

DEM and trans/dislocation is the result of interferometric processing of two radar images

DEM accuracy estimation (Sentinel-1)

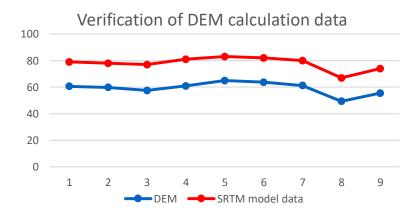
Product Explorer	Mask Manager	Layer Manager	Pixel Info ×	
- Position				
Image-X				3858 pixel
Image-Y				231 pixel
Longitude			65°30'2	5" E degree
Latitude			57°09'2	0" N degree
🕂 Time				· · · ·
- Bands				
elevation			60.6	8178 meters
The print of the		1		
Product Explorer	Mask Manager	Layer Manager	Pixel Info \times	
- Position				
Image-X		4481 pixel		
(mage-Y		413 pixel		
ongitude			65°30'	25" E degree
Latitude			57°09'	20" N degree
- Time				
Date		2015-09-20 YYYY-MM		
Time (UTC)			01:49:58:6	62 AMHH:MM:S
- Bands				
lisplacement			0.	22831 meters
The Delink Colds				

9 points per map-case and DEM

Calculation of the root-mean-square deviations (RMS) in two groups:

- RMS _{map-cases} = 13,44 m
- RMS_{DEM} = 13,24 m

DEM accuracy estimation (Sentinel-1) и SRTM


.№ point	Point coordinates	Height at point according to DEM, m	Height at point according to SRTM, m
0448	Lat 57°09'20" N Lon 65°30'25" E	60.68	79
0465	Lat 57°09'51" N Lon 65°30'35" E	59.83	78
0467	Lat 57°09'10" N Lon 65°30'38" E	57.49	77
0571	Lat 57°09'37" N Lon 65°31'48" E	60.97	81
0572	Lat 57°09'27" N Lon 65°31'51" E	64.93	83
0573	Lat 57°09'21" N Lon 65°31'51" E	63.73	82
0729	Lat 57°08'45" N Lon 65°33'22" E	61.27	80
0922	Lat 57°09'13" N Lon 65°35' E	49.41	67
2408	Lat 57°07'49" N Lon 65°35'21" E	55.56	74

Verification of DEM calculation data 40 40 1 2 3 4 5 6 7 89

9 points per SRTM and DEM;

Calculation of the root-mean-square deviations (RMS) in two groups:

- RMS_{SRTM} = 13,89 m
- RMS_{DEM} = 13,24 m

DEM

Input requirements:

- Two radar images (Sentinel-1)
- IW shooting mode
- Radar images should be selected according to rules, which are developed into the project

Methodology:

http://sentinel1.s3.amazonaws.com/docs/S1TBX%20TOPSAR %20Interferometry%20with%20Sentinel-1%20Tutorial.pdf

DEM

Problems in evaluation:

- **1.** It is required a high qualification of the users to select a pair of radar images
- 2. It is hard to select two coherent images
- 3. It is hard to automate the evaluation of this
- 4. Spatial resolution of the Sentinel-1 radar images is not enough to satisfy an objectives

DEM accuracy estimation

Problems in evaluation:

- 1. It is necessary to know the map-cases or other input data export date (for relevance)
- 2. It was estimated by comparing the RMSD of the evaluated DEM and the map-case and SRTM

building in2016
building in 2017

S₂₀₁₆ = 2173 km² S₂₀₁₇ = 4034 km² Building Dynamics = **85,6**%

Building Dynamics

Input requirements:

- Two optical Sentinel-2 images (summertime)
- The same weather conditions for a good shoot (well brightness, etc.)
- The vector of the roads (recommended)

Methodology:

- 1. Create a polygon area (if needed)
- 2. Exclude the vector of the buildings, roads and railway (recommended)
- 3. Choose a set of buildings examples/etalons
- 4. Binary classification (or ISODATA method)
- 5. Visual check of the result
- 6. Combine classes that contain buildings
- 7. Vectorize the result
- 8. Calculate the ratio between two vector layers

Building Dynamics

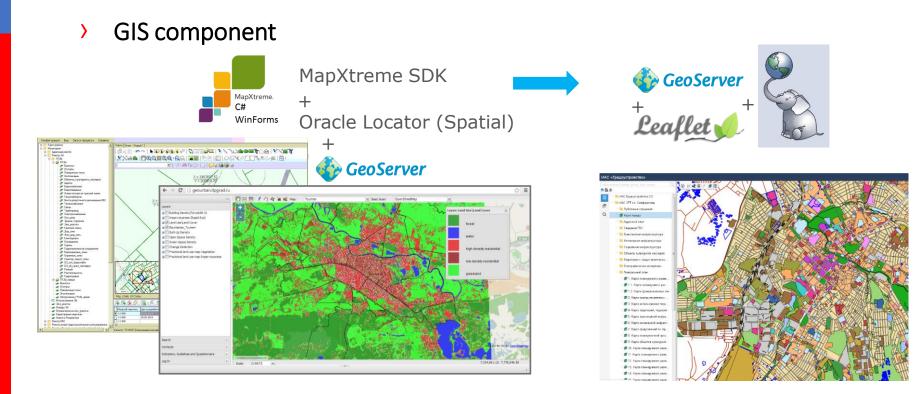
Problems in evaluation:

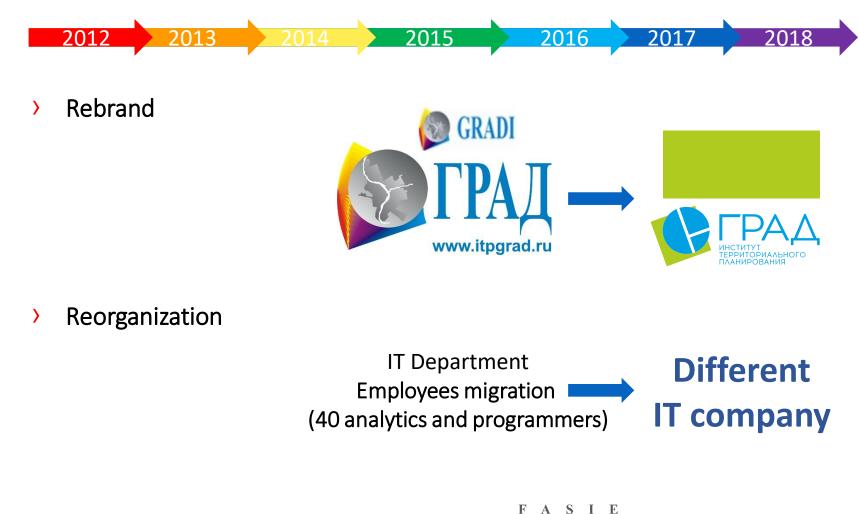
- It is hard to find two images with high and similar (the same) quality and free of charge
- **2.** There is no alternative data to check the result

The WIS's Functionality

- 1. Create the project for the satellite images processing and indicators evaluation
- 2. Select, download free EO-data into the storage and project
- 3. Manage the storage: add, edit and delete the vector
- 4. Manage a map: display the satellite images, set the channels, switch on/off layers, change the projection
- 5. Automatic indicators evaluation
- 6. Display indicator's attributes and legend (short and detailed format)
- 7. Personal settings of the project, indicator displaying and legend etc.
- 8. Export the indicator
- 9. Print a map
- **10.** Copy a link to a map's extent
- 11. Make an order of EO-data from other satellites with payment
- **12.** Display user's guide and methodology description

Problems during our experience


- Free satellite images is not suitable for making decision in urban planning sphere. The required spatial resolution should be High or Very High
- VHR space images with 4 channels (RGB, NIR) is not available
- Other EO-data, for examples orthophotos, do not have any channels and can not be used
- Now the indicators are evaluated using Sentinel-1, 2, Landsat-8. Methods of VHR images processing differ from the developed
- The selection and downloading (only one or two together) of free space imagery (without clouds, needed borders and dates etc.) takes a long time
- Choosing a set of needed examples/etalons takes a long time
- Image processing and indicators evaluation needs a user's visual control or verification
- There are no available open source software with needed algorithms for indicators evaluation
- The WIS GEOURBAN is not available for use and improvement as it used to be because of technologies


Technologies

The organization problems of GRADI

> Finish of Collaboration with Funding source

Thank you very time!